Introduction to MATLAB

Arturo Donate
Introduction

- What is MATLAB?
- Environment
- MATLAB Basics
- Programming
- Toolboxes
- Comparison
- Conclusion
What is MATLAB?

- Matrix laboratory
- Programming environment
- High-performance language
- Windows, OSX, Linux/UNIX
- Matrix/Vector computations
- Linear equations, eigenvectors, etc...
- LINPACK, EISPACK, LAPACK, BLAS, etc...
What is MATLAB?

Uses:
- math & computation
- algorithm development
- modeling and simulation
- data analysis and visualization
- application development
What is MATLAB?

- Toolboxes
 - image processing
 - filtering, transforms, analysis, enhancement
 - statistics
 - linear models, probability dist., HMMs
 - optimization
 - max/minimization, least squares, line fitting
What is MATLAB?

- Toolboxes
 - fixed-point
 - fixed-point data type & arithmetic
 - others:
 - symbolic math
 - signal processing
 - virtual reality
function [s, t] = eigencluster(A_orig, level)
 if exist('level')==0
 level=1;
 end
 A = A_orig;
 [num_vect] = size(A,1);
 for i=1:num_vect
 A(i,:) = A(i,:)/sum(A(i,:));
 end
 AAt = A*A';
 p = zeros(num_vect,1);
 R = zeros(num_vect);
 D = zeros(num_vect);
 %step 1:
 for i=1:num_vect
 p(i) = sum(AAt(i,:));
 end
 %step 2:
 pi = (1/sum(p(:))) * p;
 for i=1:num_vect
 R(i,i) = p(i);
 D(i,i) = sqrt(pi(i));
 end
 %step 3:
 s = R(:,1)*W(:,1); %W (P^D)
Basic Console Commands

- help
- ls
- who, whos
- clear, pack
- load, save
- eval
- disp
- what, type
- lookfor, which
- exit, quit
Basic Math Commands

Operations
- mean, median, mode
- sum, abs
- sin, sinh, asin, etc...
- sqrt, log, exp
- floor, ceil, round
- hist, plot

Constants
- $\pi = 3.14159...$
- $i, j = \sqrt{-1}$
- realmin, realmax
- Inf, NaN
Vectors and Matrices

Creating

- \(M = \text{ones}(10,10) \)
- \(M = \begin{bmatrix} 1 & 2 & 3; 4 & 5 & 6; 7 & 8 & 9 \end{bmatrix} \)
- \(M(1,1) = 23 \)
- \(M = \begin{bmatrix} \text{eye}(6) & \text{rand}(6) \end{bmatrix} \)

Accessing

- \(M(x, y) \)
- \(M(x, :) \), \(M(x, i:j) \)

Deleting

- \(M = [] \)
Vectors and Matrices

- Operations
 - + - * / ^ '
 - any, all
 - diag
 - rank

- eig
- svd
- trace
- prod
Vectors and Matrices

Sample expressions:

- $A = B \times C$
- $\text{num} = \text{abs}(3 + 4i)$
- $\text{vector} = \sin(1:50)$
- $B = [A' \ C']$
- $B(:,2) = []$
- $\text{determ} = \text{det}(C)$
- $\text{index} = \text{find}(C > 0)$
- $x = \neg \text{isprime}(y)$
- $\text{num} = \text{numel}(x)$
- $[x \ y] = \text{size}(C)$
Vectors and Matrices

Colon notation

- $1 : 50$
- $1 : 2 : 50$
- $\text{A}(:, 2)$
- $\text{A}(1:3, 2)$
- $\text{A}(2:4, :)$
- $\sin(0 : \pi/20 : 2\pi)$
Graphics

2D Example: plot(sin(0 : pi/20 : 2*pi))
Graphics

- 3D example - plot 3D point cloud
Graphics
Programming

Functions

- function \([X \ Y] = \text{func_name}(\text{arg1, arg2})\)
- func_name.m
- primary vs sub-functions
- nested function declaration/definition

- private functions
- function overloading (int vs double)
- global variables
- pre-allocation
- vectorization
Programming

- script vs function
- if, elseif, else
- for, while
- switch, case
- continue, break
- return
Programming

Relations

\(\sim a \)

\(a == b \)

\(a \sim= b \)

\(a <= b \)

\(a \& b \)

\(a \mid b \)

\(a \mid \sim a \)
Programming

- Data Structures
 - Matrix
 - basic data type
 - Cell
 - multi-dimensional matrices

- String
 - character array

- Structure
 - type with various fields
Simple Example: SVD

Create a function that:
- takes a matrix as input
- make sure the matrix is square
- computes the SVD decomposition
- returns the first singular value

“answer = my_func(matrix)”
Simple Example: Sort

Create a function that:
- takes a list as input
- sorts the list
- returns a list with sorted values
- “answer = my_func(matrix)”
Image Processing

- Toolbox used for image processing, computer vision, and signal processing tasks
 - image transformation
 - registration
 - filtering
 - image analysis/enhancement/de-blurring
 - segmentation
 - etc...
Image Processing

- Noise reduction example
- salt & pepper noise
- mean, median filter
- \texttt{filter2(fspecial('average', 3), image) / 255}
- \texttt{medfilt2(image, [3 3])}
Color segmentation example

cform = makecform('srgb2lab')
lab_img = applycform(image, cform)
ab = double(lab_img(:,:,2:3))
nrows = size(ab, 1)
ncols = size(ab, 2)
ab = reshape(ab, nrows*ncols, 2)
Image Processing

\[
[\text{cluster}_\text{idx}, \text{cluster}_\text{center}] = \text{kmeans}(\text{ab}, 3, \text{'distance'}, \text{'sQEuc\text{lidea}\text{n}'}, \text{'Replicates'}, 3);
\]

\[
\text{label} = \text{reshape}(\text{cluster}_\text{idx}, \text{nrows}, \text{ncols}, 1);
\]
Image Processing

Texture segmentation example

\[E = \text{entropyfilt}(I); \]
\[Eim = \text{mat2gray}(E); \]
\[BW1 = \text{im2bw}(Eim, 0.8); \]
\[BWao = \text{bwareaopen}(BW1, 2000); \]
\[nhood = \text{true}(9); \]
Image Processing

- `closeBWao = imclose(BWao, nhood);`
- `roughmask = imfill(closeBWao, 'holes');`
- `I2 = I; I3 = I;`
- `I2(roughmask) = 0;`
- `I3(~roughmask) = 0;`
MATLAB Clones

- Packages: Scilab, Octave, Rlab

- Similar:
 - matrix is basic data type
 - complex number support
 - built-in mathematical functions
 - powerful library
 - user-defined functions
MATLAB Clones

- Scilab
 - www.scilab.org
 - best support & docs
 - good compatibility
- Octave
 - www.gnu.org/
 - software/octave

- Unix-like
- Rlab
 - rlab.sourceforge.net
 - attempts to improve syntax/semantics
 - least compatible
Conclusions

- interactive programming environment
- high performance language
 - algorithm design
 - modeling & simulation
 - analysis & visualization
- linear algebra
- toolboxes
References

MATLAB:
www.mathworks.com

MATLAB Tutorial:
www.math.ufl.edu/help/matlab-tutorial/

MATLAB Comparison:
www.dspguru.com/sw/opendsp/mathclo2.htm